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Undoubtedly,  FTIR-spectrophotometry  has  become  a standard  in  chemical  industry  for  monitoring,
on-the-fly,  the different  concentrations  of  reagents  and  by-products.  However,  representing  chemical
samples  by  FTIR  spectra,  which  spectra  are  characterized  by  hundreds  if not  thousands  of  variables,  con-
veys  their  own  set of  particular  challenges  because  they  necessitate  to  be analyzed  in  a  high-dimensional
feature  space,  where  many  of  these  features  are  likely  to  be highly  correlated  and  many  others  surely
affected  by  noise.  Therefore,  identifying  a  subset  of features  that  preserves  the  classifier/regressor  per-
formance  seems  imperative  prior  any  attempt  to build  an  appropriate  pattern  recognition  method.  In
this  context,  we  investigate  the  benefit  of  utilizing  two  different  dimensionality  reduction  methods,
namely  the  minimum  Redundancy-Maximum  Relevance  (mRMR)  feature  selection  scheme  and  a  new
self-organized  map  (SOM)  based  feature  compression,  coupled  to regression  methods  to  quantitatively
eature compression
egression models
TIR-spectrophotometry

analyze  two-component  liquid  samples  utilizing  FTIR  spectrophotometry.  Since  these  methods  give us
the  possibility  of selecting  a small  subset  of  relevant  features  from  FTIR  spectra  preserving  the statistical
characteristics  of the  target  variable  being  analyzed,  we  claim  that  expressing  the FTIR  spectra  by these
dimensionality-reduced  set  of features  may  be beneficial.  We  demonstrate  the  utility  of  these  novel
feature  selection  schemes  in  quantifying  the  distinct  analytes  within  their  binary  mixtures  utilizing  a
FTIR-spectrophotometer.
. Introduction

Recently, there has been a growing demand for and rapid
ncrease in developing new and sophisticated analytical methods
or monitoring and identifying chemical compounds in a variety
f chemical industry applications in general, and, in particular,
or monitoring on-the-fly the concentrations of reagents and by-
roducts [1]. Among the widely used tools to achieve this goal,

nfrared spectroscopy has been a workhorse technique for mate-
ials’ analysis in the laboratory for over seventy years [2–5]. An
nfrared spectrum represents a fingerprint of a sample with absorp-
ion peaks that correspond to the frequencies of vibrations between
he bonds of the atoms making up the material [6]. Since each dif-
erent material has a unique molecular structured combination of
toms, in principle no two compounds produce the exact same
nfrared spectrum [7]. Therefore, the resulting infrared spectrum

ignature defines the chemical compound identity, whereas the
ize of the peaks in this annotated spectrum is a direct indica-
or of the amount of material present. With the advent of Fourier

∗ Corresponding author. Tel.: +1 8585346758; fax: +1 8585347664.
E-mail  address: vergara@ucsd.edu (A. Vergara).

039-9140/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2011.10.014
© 2011 Elsevier B.V. All rights reserved.

transform infrared spectrophotometry (FTIR-spectrophotometry),
infrared analysis has become a breakthrough in performing tasks
connected with the machine olfaction applications of identify-
ing, classifying, and, when coupled with proper computational
regression methods, quantifying chemical analytes of an unknown
mixture [7]. The FTIR-spectrophotometry, which name refers to the
manner that the data is collected and converted from an interfer-
ence pattern to an actual spectrum, is preferred over its former
dispersive-type-of-instrument modality for a variety of reasons:
first, it is a non-destructive technique; second, it provides a precise
measurement methodology with no external calibration needed;
third, it has a greater optical throughput; and fourth, it only has one
mechanic moving part, which in essence means that the speed and
sensitivity of the FTIR-spectrophotometer to quantitate the multi-
ple concentrations of materials within multi-component mixtures
augments. And yet, the FTIR spectra are characterized by hundreds
if not thousands of variables (transmittances), which present its
own set of challenges since the analysis has to be conducted in a
high-dimensional feature space, where many of these features are

likely to be highly correlated and many others surely affected by
noise. Therefore, a feature step leading to a reduction in dimension-
ality seems imperative prior any attempt to build an appropriate
pattern recognition method.
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By far, the most common choice to perform the multivariate
odeling of the FTIR spectra, and hence reducing its dimensional-

ty, is utilizing calibration models that will facilitate, yet perform in
 more efficient way, the interpretation of the information entan-
led in the mentioned spectra. The two main approaches consist
f either selecting an optimal subset of factors, e.g. the latent vari-
bles (LVs) or principal components (PCs) of the partial least square
PLS) or principal component regression (PCR) models, respec-
ively [8–11], or selecting the wavelengths to be used to build a

ultivariate model (e.g., utilizing a multi-linear regression (MLR)
odel) [12–16]. The main advantage of PLS and PCR is their abil-

ty to compress the relevant information into a few orthogonal
Vs or PCs, in which their orthogonality allow irrelevant PCs and
Vs to be removed that in essence leads to more efficient mod-
ls. However, factor selection uses the full spectrum—including
oisy wavelengths—to compute the factors before selecting from
mong them, which means that the variables chosen to perform
egression may  not have a direct physical meaning with respect to
he chemical sample being analyzed. Moreover, the selection of an
ptimal subset of factors may  not be necessarily straightforward
ecause the magnitude of an eigenvalue is not always a measure of

ts significance for the calibration [17]. On the other hand, meth-
ds based on selected wavelengths (e.g., MLR) are often preferred to
heir alternative factor selection methods because they use original
ariables (i.e., absorbances that are directly related to the chemical
nformation) to create the regression model; becoming thereby,
asier to interpret. Therefore, these methods are expected to be
obust toward the experimental conditions of each specific appli-
ation. However, selecting from the full spectrum of wavelengths is
hallenging because there is considerable overlapping among the
pectra and the distinctive features are almost imperceptible, not
o mention the effect of noise to those spectra. Consequently, MLR
s only attractive if applied to a few correctly selected spectral vari-
bles, since the collinearity within the variables may  jeopardize the
tability of the method [12].

In the last few years considerable attention has been given
o strategies for feature selection (or variable selection, among

any other names given) in spectroscopic analysis [18–23]. The
ask of feature selection is to reduce the number of variables
sed in training a pattern recognition algorithm (i.e., a classifier
r regression tool) [24]. Three main benefits can be drawn from
uccessful feature selection: first, a substantial gain in compu-
ational efficiency (especially important for any application that
equires classifier execution in real time); second, scientific dis-
overy by determining which features are most correlated with
he class labels (which may  in turn reveal unknown relationships
mong features); and, third, reduction of the risk of overfitting
f too few training instances are available (a serious problem
articularly in situations with high dimensionalities relative to
raining set sizes). Many methods have been suggested to solve the
ariable selection problem within the field of machine olfaction
nd chemometrics. In the most generic way, they can be catego-
ized into three groups [25]. Filter methods that perform feature
election that is independent of the classifier [26–28]. Wrapper
ethods, which use search techniques to select candidate subsets

f variables and evaluate their fitness based on classification accu-
acy [29–31]. Finally, embedded methods that incorporate feature
election in the classifier objective function or algorithm [32,33].
owever, despite all the success stories for feature selection
ethods to effectively select wavelengths in many different spec-

roscopic analysis based application scenarios, the solution found
hould be investigated carefully because many of these algorithms

e.g., genetic algorithms (GA)), may  not prevent from meaning-
ess variables (i.e., random non-relevant variables) to be selected
23,34], originating thus prohibitive expensive computational
osts.
ta 88 (2012) 95– 103

With this motivation, our work in this paper focuses on three
issues that have not been considered in previous attempts. In the
first approach, we introduce to the chemo-sensing community a
novel formulation, namely minimum Redundancy-Maximum Rele-
vance (mRMR) filter, to select a subset of relevant features from FTIR
spectra. Thus, the first goal of this paper is to evaluate the usability
of the mRMR  feature selection algorithm to select a feature subset
that characterizes best the statistical properties of a target quan-
tification variable, subject to the constraint that these features are
mutually as dissimilar to each other and relevant as possible. A filter
rather than a wrapper approach is considered here in an attempt
to keep computational costs low as well as generalization of the
selected features on alternative classifiers or regressors. In the sec-
ond approach, we  utilize a self organizing map  (SOM) to perform a
feature compression step to investigate its capability to reduce the
number of features input to the different calibration models. And
third, through the comprehensive experiment considered in this
work, we  compare the mRMR  feature selection, the SOM feature
compression, and a two stage feature selection + feature compres-
sion algorithm, prior the use of any standard calibration models
(e.g., MLR, PCR or PLS) for predicting the concentration of a given
set of species within a ternary mixture. Going forward, by attain-
ing “double citizenship” in feature selection and feature compression
we believe to be uniquely positioned in building more robust, more
accurate, and more stable calibration quantification models for the
specific application at hand. In the remainder of this manuscript,
we will first describe the dataset considered in this work to per-
form the dimensionality reduction studies and the experimental
setup utilized to gather it (Section 2). We will then briefly describe
the mRMR,  the SOM feature selection schemes, and the combined
two-stage feature reduction scheme, followed by presenting the
quantification results of the proposed dimension reduction algo-
rithms in predicting the concentrations of the distinct analytes of
the unknown mixture (Section 3). And finally, we will present some
concluding comments drawn from the results presented in this
work (Section 4).

2.  Experiments

We  apply our proposed dimensionality reduction coupled to
regression methods’ scheme on an extensive dataset recorded by
a FTIR-spectrophotometer. In what follows, we will describe the
dataset and then the measurement protocol and software utilized
to gather it.

2.1.  Apparatus

In  gathering our dataset, we utilized a VERTEX 70 series FTIR-
spectrophotometer, developed by Bruker Optics, Inc. [35]. The
considered system has a wide spectral range, between 9800 and
370 cm−1, standard resolution of 0.5 cm−1, and includes a measure-
ment cell (OMNI-CELL, SPECAC, Inc.), in which the samples to be
analyzed are injected using high-precision liquid chromatography
(HPLC) syringes. These syringes are accurate within ±1% of nom-
inal volume and with precision within ±1%, measured at 80% of
total scale volume. The cell windows are in NaCl, and the optical
path is set to 0.5 mm by using Teflon spacers [36]. Thus, this sys-
tem allows versatility in conveying the chemical information of the
sample being detected at the desired concentrations to the sensing
cell with high accuracy and in a highly reproducible way.

2.2.  Software
The spectrophotometer uses specific software from Bruker
Optics Inc. for managing spectra (OPUS Spectroscopy Software)
[37]. The calibration models were built and validated using
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Fig. 1. Typical spectra obtained with the FTIR spectrophotometer for liquid sampl

Table 1
Analytes’ mixtures and concentrations (in %) covered in the dataset.

Methanol p-Xylene No. of samples

0 0.1 19
0 0.5 20
0 1 22
0.1 0 20
0.1 0.1 38
0.1 0.5 20
0.1 1 19
0.1 10 20
0.5 0 19
0.5 0.1 38
0.5 0.5 20
0.5 1 19
0.5 10 20
1 0 25
1 0.1 19
1 0.5 19
1 10 22
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quantitated from the mixture), we revisit here the feature selec-
10 0.5 19
10 1 22

tandard routines from the PLS-Toolbox® [38] developed by Eigen-
ector Research Inc. The self organizing feature maps and the
RMR subsets of features were built and validated using standard
ATLAB® [39] routines.

.3.  Datasets and procedures

The  samples to be analyzed consisted of highly imbalanced
inary mixtures of methanol and p-xylene diluted in Trichlorotri-
uoroethane. The analytes and the solvent were purchased from
igma–Aldrich and were HPLC grade (their purity was better than
9.9%). Trichlorotrifluoroethane was chosen as solvent because of

ts inertness and lack of absorption in the NIR region. Table 1 spec-
fies the concentration of each species in the multi-component

ixtures.
The  dataset1 used in the work reported here comprises 439 dis-

oint spectra recorded at different times during five consecutive
ays, in which each of the samples to be analyzed was prepared
ndependently. In other words, replicate measurements of a given
ixture were not performed on aliquot samples but prepared each

ime mixing its constituents in appropriate quantities. Table 1

1 The dataset considered in this work is obtainable from the corresponding author
pon  request.
be r (cm )

es containing methanol (10%) or p-xylene (10%) in Trichlorotrifluoroethane.

specifies the exact concentration and number of replicate mea-
surements taken for every mixture. The raw spectra consisted of
the transmittance for wavenumbers between 9800 and 3580 cm−1

(recorded at a resolution of 8 cm−1, which gave 777 transmittances
per spectra). Fig. 1 shows some typical FTIR spectra for the men-
tioned analytes’ mixtures. The 439 spectra were used to investigate
the effects of feature reduction utilizing mRMR  feature selection
and self organizing maps based feature compression methods on
the building and validation of MLR, PCR and PLS models for estimat-
ing analyte concentration within the mentioned mixtures. Finally,
the choice of these analytes to perform the analytes’ mixtures
considered in this work was  not motivated by any particular rea-
son. The sole peculiarity of the problem addressed in this dataset
is its inducement of a non-trivial quantification instance within
the selected analytes’ mixtures. This dataset is particularly chal-
lenging due to the highly imbalanced nature of the concentration
values that form every mixture and the overall concentration of the
mixture.

3. Dimensionality reduction and experimental results

3.1.  The mRMR feature selection

Our  goal is to develop a dimensionality reduction method
capable of succeeding with our very large dataset with high dimen-
sionality recorded from a FTIR-spectrophotometer.2 To achieve
this goal, our first contribution is a novel formulation, namely the
minimum Redundancy-Maximum Relevance (mRMR) principle, a
methodology that has previously been successful for a broad range
of other quite different applications [40]. The central idea of the
mRMR  criterion is to find a subset of features, in which the selected
promising features jointly have the minimum redundancy (or sim-
ilarity) on each other and, simultaneously, the largest relevance
(or dependency) on the targeted class. Accordingly, assuming an
input data D tabled as N samples and M features (i.e., our entire
multi-analyte multidimensional dataset that comprises 439 dis-
joint raw spectra, each of which with 777 transmittances), and
the target quantification variable c (i.e., our targeted analyte being
tion problem utilizing the mRMR  approach on a odor quantification
instance as a case of study. The feature selection problem is to find
from the M-dimensional observation space, RM, a subspace of m

2 The loadings of a principal component analysis performed on the data (not
shown)  confirmed that data were multidimensional.
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Fig. 2. (a) Typical spectra obtained with the FTIR spectrophotometer for liquid
samples  containing methanol (0.1% and 0.5%) mixed with different concentration
of  p-xylene. From panel (a) we can note that region of bands between 6800 and
6900  cm−1 (highlighted in gray) represent the change in concentration of methanol
regardless  the dose of p-xylene. (b) Typical spectra obtained with the FTIR spec-
trophotometer  for liquid samples containing p-xylene (0.1 and 1%) mixed with
different concentration of methanol. From panel (b) we can note that the region

−1
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eatures, Rm, that characterizes “best” c, in which the best charac-
erization condition means the minimal quantification error rate
ielded by the regressor.

The  mRMR  problem is to maximize a combined single criterion
unction subject to linear constraints as follows:

ax  � (D, R), � = D − R. (1)

Above,  the term D is the Maximum Relevance criterion, which
eeks to find the feature subset S with m features {xi} that jointly
ave the maximum dependency on the target class c, thus,

ax D (S, c), D = I({xi, i = 1, . . . , m}; c). (2)

In  other words, it scores the level of discriminant power of
ransmittances when they are differentially expressed for differ-
nt targeted classes. Thus, I(xi, c) quantifies the relevance xi for
he quantification task. The term R, on the other hand, is the mini-

um redundancy condition that aims at selecting only the subset
f features S that are mutually exclusive, thus,

in  R(S), R = 1
|S|2

∑

xi,xj ∈ S

I(xi, xj), (3)

hich  in essence I(xi, xj) measures the level of similarity between
ransmittances.

In this paper, we test the feasibility of the mRMR criterion in
educing the dimensionality problem of our dataset, treating both
f the above mentioned conditions equally important. Once the
ombined single criterion from Eq. (1) has been optimized, the
omponents of x represent the weight of each feature. Features
ith higher weights are better variables to use for the subsequent

egression training. Accordingly, an incremental search method can
n practice be utilized to find the near-optimal features defined by

(·).
One advantage of the problem formulation above is that it is

ufficiently general to permit any symmetric similarity measure
o be used. A common choice to measure similarity is the Pear-
on correlation coefficient �. However, it only measures the linear
elationship between two random variables, which may not be suit-
ble for some classification or quantification problems. The Mutual
nformation (MI), in contrast, captures the non-linear dependencies
etween variables, which is particularly common in the odor quan-
ification task addressed here. Accordingly, in this paper we utilize

I as a symmetric similarity measure. For discrete/categorical vari-
bles, the MI  between two random variables, say x and y, can
ormally be defined in terms of their joint probability distribution
(x, y) and the respective marginal probabilities p(x) and p(y) as
ollows:

(x, y) =
∑

i,j

p(xi, yi) log
p(xi, yi)

p(xi)p(yi)
, (4)

here  the I(·), as an index measure, provides a ranking of features
hat takes into account the mutual information between all pairs
f features and the relevance of each feature to the class label,
imultaneously.

Fig. 2 shows the typical FTIR transmittance spectra for two  of
he multiple binary mixtures tested: 0.1 and 0.5% of methanol in
resence of p-xylene dosed at different concentrations (panel (a))
nd 0.1 and 1% of p-xylene in presence of methanol dosed at differ-
nt concentrations (panel (b)). This figure shows how our proposed
RMR based feature selection scheme captures the transmittances

hat define the entire analyte-spectrum signature corresponding
o each concentration of methanol and p-xylene (panel (a) vs. (b))

rrespective of the concentration of their interferents (i.e., the sec-
nd constituent analyte of each mixture), thereby promoting the
uantification capability of our calibration models. Notice that the
egion of bands between 6800 and 6900 cm−1 represent the change
of  bands between 5550 and 5700 cm (highlighted in gray) are specific to the dif-
ference in concentration of p-xylene independently of the concentrations dosed of
the second mixture constituent, i.e., methanol (b).

in concentration of methanol regardless the concentration of p-
xylene (panel (a)), whereas the region of bands between 5550
and 5700 cm−1 are specific to the difference in concentration of
p-xylene independently of methanol (panel (b)).

3.2. The SOM feature compression

Going  forward to attaining our dimensionality reduction plan,
our second contribution is the self organizing map  (SOM), an arti-
ficial neural network paradigm that has been widely applied to
classify data from multi-sensory systems [41] and to counteract
sensor drift [42]. The self organizing map  belongs to the category of
competitive learning methods with unsupervised training. It per-
forms a topology preserving projection of the data space onto a
regular two-dimensional space where similar samples are located
together. Accordingly, we utilize the SOM as a feature compressor,
in which the full spectra (i.e. 777 features) are input to the net-
work, and the outputs of this network (i.e. transformed features)
are fed into the different calibration models. In other words, the
MLR, PCR or PLS regression models are not built using the 777
original features of each transmittance spectrum but employing
the outputs (i.e. transformed features) of the SOM.  Accordingly,
since the number of neurons within the two  dimensional grid of
the SOM is significantly lower than the number of original features
in each spectrum, the network can thus be thought of as a feature
compressor [43].

3.3.  Quantification accuracy results
To evaluate the usability and robustness of the dimensionality
reduction methods presented here, we address a chemical analyte
mixture quantification problem instance induced by our dataset
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escribed above (see Table 1). Our goal is to assess how much
ach dimensionality-reduced dataset contribute in the prediction
f the analytes’ concentrations (i.e., analyte quantification) of each
f the constituent species of the highly imbalanced binary mixtures.
e are particularly interested in this dataset for their inducement

f a non-trivial quantification instance within the highly imbal-
nced concentration values of the mixtures and the small overall
oncentration of the mixture. The concentration is a continuous
ariable, hence the prediction should be made by a regression
ool, which takes the features from each created dimensionality-
educed model, and outputs a real number. Our mRMR  feature
election method and SOM feature compressor scheme do not con-
olve with specific regressors. Therefore, we expect the features
elected by these schemes have good performance on various types
f regression tools. Accordingly, we conducted our validation pro-
ess by measuring the quantification performance yielded by three,
gold standard” in chemometrics, regression tools, namely the prin-
ipal component regression (PCR) [8], the partial least square (PLS)
9], and the multi-linear regression (MLR) models [12].

We  quantified the performance of each created model in the
egressor by applying the following training/validation procedure.
irst, for each individual analyte of the binary mixture, we randomly
elected 70% of the resulting 439 spectra recorded data for train-
ng the different regression models and kept the remaining 30% for
alidating them. We  then present this randomized split, a batch of
ata containing 307 training spectra, each of which consisted of 777
ransmittances at wavenumbers between 9800 and 3580 cm−1, to
ach of the above described dimensionality reduction algorithms to
ompute the feature selection and feature compression processes,
ndividually, creating thereby the different calibration models to
e further analyzed (see Fig. 2 for reference on the typical trans-
ittance spectra for methanol and p-xylene). For implementing

urposes of the mRMR  criterion, each variable was  discretized in
hree segments at the positions: {(−∞, �, −�), (� − �, � + �), (� + �,

)} where it takes −1 if it is less than (� − �), 1 if it is larger than
� + �), and 0 if otherwise, being � and � the mean and standard
eviation of training data, respectively. For implementing the SOM
etwork, on the other hand, a set of SOMs, which had 20 through
00 neurons, were trained using the 307 spectra from the train-

ng dataset in 200 epochs3 and employing the default values set in
he neural network toolbox of Matlab (i.e., decreasing learning rate
nd high neighborhood distance during the initial training phase
nd small learning rate and low neighborhood distance during the
ne tuning phase). Once the dimensionality reduction processes
ere implemented, we utilize their responses to the training spec-

ra to build the MLR, PCR and PLS models, varying the number of
eatures or neurons considered. The resulting response matrices
ave 307 rows corresponding to the number of spectra consid-
red and a number of columns that equals the number of features
elected from the mRMR  (from 5 up to 200 features) or the number
f neurons employed by each network (from 20 up to 200 neu-
ons). After that, we trained and cross-validated (via leave-one-out
ross validation (LOO-CV) process) each calibration model using
he training examples to determine the optimal number of fac-
ors, e.g., principal components (PC) or latent variables (LV) to be
onsidered in the PCR or PLS regression models, respectively, and
hen applied the validation batch of recordings to verify the correct
oncentration prediction rate (i.e., validate our results). The con-

entration prediction was made by computing the mean squared
rror of cross validation (MSECV) versus the number of PC and LV
sed to design the quantification models, respectively. The number

3 The number of training iterations (i.e., 200 epochs) was  selected as the minimum
umber  of iterations that led to the lower number of misquantified samples over
he training set.

20 30 40 50 60 70 80 90

Number of neurones

Fig. 3. Evolution of prediction error for the different calibration models as a function
of the number of features selected by mRMR  versus prediction error for the different
calibration models as the number of neurons within the SOM feature compressor.
Panel  (a) versus panel (b) shows the comparison for methanol. Panel (c) versus
panel  (d) shows the evolution for p-xylene.
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f PC and LV selected was the value after the first sharp decrease in
SECV. This strategy for determining the optimal number of fac-

ors is often employed to fight the risk of over fitting [9]. Once the
umber of PC and LV was determined, we then build the quantifi-
ation models (one for each analyte), and validated the calibration
odels, using the 132 spectra data that had been held out (i.e.

hose that belonged to the validation datasets), by calculating the
ean squared error of prediction (MSEPRED) as a function of the

umber of features or number of neurons4 considered for each
alibration model employed. Finally, we repeat this randomized
raining/validation episode 50 times with different random splits
f the labeled data and estimate the average correct quantification
ate. The sole purpose of these 50 runs was to consistently evaluate
he robustness of our dimensionality reduction methods.

Fig.  3 shows the evolution of the prediction error (for validation
easurements only) as a function of the number of features used

ersus the evolution of the prediction error as a function of the
umber of competitive neurons within the SOM for every chemi-
al analyte being analyzed within the mixture with respect to each
egression tool (methanol: panel (a) vs. panel (b); p-xylene: panel
c) vs. panel (d)). Note that each profile corresponding to every
egressor in Fig. 3 (a) and (c) follows a similar pattern along the
ifferent number of features considered when the mRMR  feature
elector is implemented, in the sense that their extreme points
i.e., the lowest prediction errors) occur at the same values. The
rdering of these points in magnitude gradient is also preserved to

 large extent across the different features considered, being the
LR always the winner in yielding the best quantification perfor-
ance among the three calibration regression models. Later on

his paper, by employing a different validation strategy, it will
e shown that the better performance of MLR  is only apparent,
ince its generalization ability is poorer than that of PCR or PLS.
ig. 3 panels (b) and (d), respectively, shows, on the other hand,
he evolution of prediction errors for SOMs employing between 20
nd 90 neurons. As observed in these figures, the values of pre-
iction errors remain quite stable for all the different number of
eurons considered up to 80 neurons and then start to rise as the
umber of neurons increases. When a 40-neuron SOM is used, the
ean squared errors of prediction reach their minimum values (i.e.,

 × 10−3 for MLR, 2.12 × 10−2 for PCR and 2.10 × 10−2 for PLS). The
verage prediction rates over the 50 training/validation split tri-
ls are listed in Tables 2 and 3 for each comprised analyte and
tand-alone dimensionality reduction method used and compared
gainst the performance attained when no-reduction method was
sed (Table 4). More specifically, each Table illustrates the mean
alues of the MSEPRED, the slopes (m), intercepts (i) and the corre-
ation coefficients (R) of the linear regressions between the actual
nd predicted concentrations, where the closer to one are the slopes
nd correlation coefficients and the closer to zero is the MSEPRED
nd intercepts, the better the quantification calibration models are.
s the results indicate, both pre-processing methods boost up the
rediction ability of the different models, being the SOM feature
ompression method the one that performs better by a slight mar-
in not only in terms of performance but also avoiding the burden
f envisaging a time-consuming variable selection procedure (see

able 2 vs. Table 3, respectively). Moreover, for PCR and PLS, pre-
iction errors are about 30% lower than those obtained when no
eature reduction pre-processing is used to build the models (i.e.

4 The validation of the SOM network is carried out by projecting the validation
pectra  onto the space of the compressed features, multiplying each spectrum by the
eurons’ weights. The resulting projected data is then multiplied by the regression
ectors of each model to obtain the estimation of the analytes’ concentrations of the
32 spectra being validated.
ta 88 (2012) 95– 103

errors shown in Table 4).5 These results clearly indicate that our
reduction methods improve the estimation of the analytes’ concen-
trations, and even more importantly, it prevents form collinearity
problems presented by the MLR  models when being built.

Fig.  4 shows the evolution of the number of miscategorized
(i.e., misquantified) samples for SOM networks employing between
20 and 90 neurons. Confusions occur when a given neuron is the
winner for spectra that belong to different methanol or p-xylene
concentrations. Increasing the number of neurons reduces the
number of misquantified spectra but at the cost of using a higher
number of uncommitted neurons (i.e. neurons that never win  dur-
ing the training process). The weights of uncommitted neurons at
the end of the training phase strongly depend on the values initially
assigned to them. In other words, since these neurons do not adapt
their weights to code a given category, weight values remain close
to their initial values, which are selected at random. This is detri-
mental for the correct estimation of analyte concentrations by the
different calibration models.

In  evaluating the ability of each pre-processing feature
reduction method, a second and more challenging training-
test/validation procedure is also envisaged in this work. In this
second approach, for each analyte, we partitioned the above
described dataset in two  parts according to their concentration
values. This is, the first part selected a batch of data containing mea-
surements of methanol or p-xylene dosed at concentration values
different from 1% for training, and held out then the remaining part
of the recordings, i.e., those measurements that contain the concen-
tration values dosed at 1%, to quantify the ability of the method to
interpolate the unknown concentrations (i.e., validate); see Table 1
for reference on the different concentration values dosed. This val-
idation strategy is more challenging, since the quantitative models
built are asked to predict concentrations that do not occur in the
first training subset, thereby enabling us to carefully verify the
generalization ability of the dimensionality-reduced models con-
sidered here.

Thus,  for the first sub-dataset part, once again we randomly
split it into 70% training and 30% test subsets by a procedure
equivalent to the one described above, where this new training sub-
set part was utilized to implement the dimensionality reduction
methods and form the calibration models. Then, via the LOO-CV
procedure, we trained and cross-validated each calibration model
using the dimensionality-reduced training examples, determining
thus the optimum number of factors or latent variables to build
each calibration model. As in the previous case, the concentra-
tion prediction was made by computing the mean squared error
of cross validation (MSECV) versus the optimum number of fac-
tors or latent variables used to design the quantification models,
in which the number of factors selected was  the value after the
first sharp decrease in MSECV. After that, we applied the part of
recordings that had been held out for test to verify the correct con-
centration prediction rate, and calculated the test mean squared
error of prediction (MSEPREDtst). Finally, using the second batch of
recordings, the final validation was performed i.e., the interpolation
of the unknown concentration values. Thus, utilizing the calibra-
tion models calculated above, we compute the validation mean
squared error of prediction (MSEPRED) and predict the concentra-
tion values of the recordings destined for validation (i.e., second
part of the sub-dataset). We  repeated this randomized training-

test/validation split episode 50 times, which enable us to carefully
check the ability of the optimized calibration models to generalize.

5 The modeling employing MLR  failed due to the high degree of collinearity
existing  among transmittances at close wavenumbers; therefore, only PCR and PLS
models were actually built when full spectra were used.
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Table  2
Quantification performance (132-spectra validation dataset) of the MLR, PCR and PLS models employing the first 40 features selected by mRMR.  The number of PCs or LVs
employed by PCR or PLS models, respectively is indicated.

Product Model Factors Corrcoef. Slope Intercept MSEPRED

Methanol MLR  – 0.993 1 −0.13 0.0223
PCR 3  0.989 1 −0.91 0.0325
PLS  3 0.991 1 −0.56 0.0272

p-Xylene MLR  – 0.991 1 −0.45 0.0261
PCR  3 0.991 1 −0.45 0.0272
PLS 3 0.991  1 −0.38 0.0268

Table 3
Quantification performance (132-spectra validation dataset) of the MLR, PCR and PLS models employing a 40-neuron SOM for feature compression. The number of PCs or
LVs  employed by PCR or PLS models, respectively is indicated.

Product Model Factors Corrcoef. Slope Intercept MSEPRED

Methanol MLR  – 0.999 1 −0.017 0.0040
PCR  3 0.997 1 −0.10 0.0212
PLS  3 0.997 1 −0.12 0.0210

p-Xylene MLR  – 0.995 1 −0.025 0.0061
PCR 3  0.992 1 −0.23 0.0242
PLS  3 0.992 1 −0.83 0.0242

Table 4
Quantification performance (132-spectra validation dataset) of the PCR and PLS models without feature compression or feature selection. The number of PCs or LVs employed
by  PCR or PLS models, respectively is indicated.

Product Model Factors Corrcoef. Slope Intercept MSEPRED

Methanol PCR 7 0.982 1.00 −1.9 0.0301
PLS  6 0.985 1.00 −1.9 0.0289

p-Xylene PCR  7 0.980 0.99 −0.82 0.0322
PLS 6  0.981 0.99 −0.83 0.0319

Table 5
Mean squared error of prediction of the MLR, PCR and PLS models for validation
samples  in the seconda training/validation approach employing the first 40 features
selected  by mRMR.  The number of PCs or LVs employed by PCR or PLS models,
respectively  is indicated.

Product Model Factors MSEPRED

Methanol MLR – 0.1034
PCR 3 0.0800
PLS 3 0.0786

p-Xylene MLR – 0.1298
PCR 3 0.0834
PLS 3 0.0821

a In this validation approach the model is validated with a concentration that
was  not found in the training set (more challenging since the model is asked to
i
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Table 6
Mean  squared error of prediction of the MLR, PCR and PLS models for validation
samples  in the seconda training/validation approach. A 40-neuron SOM is used for
feature compression. The number of PCs or LVs employed by PCR or PLS models,
respectively  is indicated.

Product Model Factors MSEPRED

Methanol MLR – 0.0970
PCR 3 0.0634
PLS 3 0.0632

p-Xylene MLR – 0.1031
PCR 3 0.0647
PLS 3 0.0645

a In this validation approach the model is validated with measurements of a single

tive to the actual species concentration. These average obtained
results shown in these tables indicate, nonetheless, that an accu-
rate estimation of gas concentration is still possible even when the

Table 7
Mean  squared error of prediction of the PCR and PLS models without feature com-
pression for validation samples in the second traininga/validation approach. The
number of PCs or LVs employed by PCR or PLS models, respectively is indicated.

Product Model Factors MSEPRED

Methanol PCR 7 0.0907
PLS 6 0.0926

p-Xylene PCR 7 0.0947
PLS 6 0.0934
nterpolate).

The average prediction rates (MSEPRED) for the validation sam-
les over these trials are presented in Tables 5 and 6. From Table 5,

t can be derived that, irrespective of the regression tool used (i.e.,
CR, PLS, or MLR), it is still manageable to perform accurate pre-
ictions of a concentration that was not in the training phase. It is

mportant to notice, however, that PLS and PCR clearly outperform
LR in this second validation approach. This clearly indicates that
LR  tends to over fit training data and does not generalize well.

oughly, an 8% error in the prediction of methanol or p-xylene con-
entration is reached when utilizing the mRMR approach. Table 6,
n the other hand, shows a 6% error in the prediction of methanol
r p-xylene concentration reached when the SOM feature com-
ressor method is utilized. As the results indicate, with this more
hallenging validation procedure the error in the estimation of

ethanol or p-xylene concentration increased with respect to the

revious validation scheme, but it still compares favorably to the
0% error obtained when no feature reduction step was present
concentration  (i.e., 1%) that was not found in the training set (more challenging since
the model is asked to interpolate).

(see Table 7 for comparison). All these errors, though, are rela-
a In this validation approach the model is validated with measurements of a single
concentration  (i.e., 1%) that was not found in the training set (more challenging since
the model is asked to interpolate).
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Fig. 4. Evolution of misquantified samples according to the number of neurons
utilized.

Table  8
Quantification performances (132-spectra validation dataset) of the MLR, PCR and
PLS models employing the first 80 features selected by mRMR  and a 16-neuron SOMa

for feature compression. The number of PCs or LVs employed by PCR or PLS models,
respectively  is indicated.

Product Model Factors Corrcoef. Slope Intercept MSEPRED

Methanol MLR  – 0.999 1 −0.012 0.0038
PCR 3 0.995 1 −0.10 0.0202
PLS 2 0.997 1 −0.09 0.0130

p-Xylene MLR – 0.997  1 −0.25 0.0050
PCR 3 0.994 1 −0.31 0.0221
PLS 2  0.995 1 −0.29 0.0202

a Increasing the number of neurons within the SOM (i.e., more than 16) does not
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Table 9
Mean  squared error of prediction of the MLR, PCR and PLS models for validation
samples  in the seconda training/validation approach employing the first 80 features
selected by mRMR  and a 16-neuron SOMb for feature compression. The number of
PCs or LVs employed by PCR or PLS models, respectively is indicated.

Product Model Factors MSEPRED

Methanol MLR – 0.0914
PCR 3 0.0615
PLS 2 0.0598

p-Xylene MLR – 0.1023
PCR 3 0.0621
PLS 2 0.0615

a In this validation approach the model is validated with measurements of a single
concentration  (i.e., 1%) that was not found in the training set (more challenging since
the model is asked to interpolate).

tion increased to about 5% for both PCR or PLS models. This is
understandable, though, since in this case the quantitative mod-
els built are asked to predict concentrations that do not occur
mprove results.

uantitative models built are asked to predict concentrations that
o not occur during their training, which clearly demonstrates the
eneralization ability of the method.

.4. The combined mRMR and SOM approach

Our goal is to design efficient algorithms to select a compact
et of features. In the previous section, we proposed two  dimen-
ionality reduction schemes namely, the mRMR  feature selection
ethod and our new SOM-based feature compression scheme.
aving established the strong capabilities of these both schemes
orking separately to quantitatively analyze the binary mixtures,

ur third contribution in the remainder of this paper is to assess
ow much these two criteria when coupled together contribute
o the prediction of the analytes’ concentration (i.e., analyte quan-
ification) of our dataset described above (see Table 1). Thus, we
resent here a two-stage feature selection algorithm. In particular,
ur intention is to utilize mRMR  feature selection in the first-stage
o find a small set of candidate features, in which the SOM fea-
ure compressor can be applied as second stage. By doing this, we
nvestigate how much the space of candidate features selected by

RMR  facilitates the integration of the proposed feature compres-
ion scheme to find a compact, yet superior, subset of features
hat will potentially lead to a more effective way  to address the
uantification instance problem presented here at a much lower
omputational cost.

To  implement our two-stage feature selection scheme and

uantify, thus, the performance of the created model, we  apply the
ollowing procedure: (i) selection of the optimal set of candidate
eatures. In doing this, we first compute the mRMR  incremental
eature selection scheme, which leads to n sequential subsets of
b Increasing the number of neurons within the SOM (i.e., more than 16) does not
improve results.

features, thus S1 ⊂ S2 ⊂ · · · ⊂ Sn.6 We  then compare all the n sequen-
tial subsets of features S1, . . .,  Sn, (1 ≤ k ≤ n) to find the range k
of small prediction error (here denoted as X), within which the
respective cross-validation classification error (calculated via the
LOO-CV process described in the previous sub-section) is consis-
tently small. Then, within X (i.e., a relatively stable range of small
prediction error), the optimal size of the candidate feature set, n*,
is chosen as the smallest number of features that corresponds to
the smallest prediction error found. And (ii), given a more com-
pact optimized set of features n*, we implement the SOM network
as a feature compressor scheme. In doing so, we  take the set of n*
features and compute our SOM-based feature compression scheme
in an incremental manner, leading to creating different n sequen-
tial models according to the number of neurons considered. We
then estimate the cross-validation quantification prediction error
on each created model. Once again we conduct our validation pro-
cess by measuring the quantification performance yielded by our
regression mechanisms following the training-validation proce-
dures described in the previous subsection, and select the model
that leads to the smallest prediction error among them. Finally,
we reproduced the whole process 50 times to generalize, utilizing
different randomized training-test/validation splits on each trial.

The average prediction rates (MSEPRED) for the validation sam-
ples of each comprised analyte over the 50 trials utilizing the
two-stage feature selection scheme are presented in Tables 8 and 9.
Table 8 shows, on the one hand, the quantification performances
(132-spectra validation dataset) of the MLR, PCR and PLS models
employing the first 80 features selected by mRMR  and a 16-neuron
SOM for feature compression. As the results indicate, coupling both
pre-processing methods together enhance the prediction ability of
the different calibration models considered. In all cases the predic-
tion errors are about 10% lower than those obtained when each
feature reduction pre-processing methods are used individually
(see Table 8 vs. Tables 2 and 3 for comparison). These results clearly
indicate that our two-stage reduction method improve the estima-
tion of the analytes’ concentrations. Table 9, on the other hand,
illustrates the prediction results of the second validation approach
in which spectra of 1% concentration of methanol and p-xylene
integrated the validation set and all remaining spectra integrated
the training set. With this more challenging validation procedure
the error in the estimation of methanol or p-xylene concentra-
6 For a full description of the mRMR feature selection process the reader is referred
to  Section 3.1 of this manuscript.
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uring their training stage. Yet it still compares favorably to the
0% error obtained when no feature reduction step was present
see also Table 4 for comparison) or the 6% error obtained when
ach feature reduction is used separately. All these errors are rel-
tive to the actual species concentration. In this second validation
pproach, the prediction errors associated to MLR  models were sig-
ificantly higher than those of PCR or PLS models and this could be
ue to MLR  being more prone to over fitting the data.

.  Conclusions

FTIR-spectrophotometry is becoming increasingly utilized by
he chemical industry to online monitor the concentration of
eagents and by-products. FTIR spectra are characterized by a high
umber of variables, some of which are highly correlated and others
re affected by noise. Here, we have reported the significant ben-
fits of utilizing two simple methods to pre-process spectra prior
o use standard calibration models such as MLR, PCR or PLS. On the
ne hand, we have stressed that a well-designed filter, such as the
inimum-Redundancy Maximum-Relevance (mRMR), can be uti-

ized to select a subset of relevant features from FTIR spectra that
est characterizes the statistical properties of a target quantifica-
ion variable. The particularity of the mRMR  scheme studied here,
s that is does not intend to select features that are independent of
ach other. In steady, it tries to select the features that minimize
he redundancy and simultaneously maximize their relevance with
espect to the targeted analyte. A self organizing map, on the other
and, was utilized to perform a feature compression step, in which
he number of features input to the different calibration models is
educed and fetch to the classifier/regressor. As demonstrated, this
ethod avoids the burden of envisaging a time-consuming vari-

ble selection procedure and does not require previous knowledge
bout the regions of the spectra that contain relevant variables or
nformation. However, both methods make it possible to build more
arsimonious models (i.e. using fewer variables), which are more
ccurate and more robust (i.e., they generalize better than less par-
imonious models). In addition to this, we have demonstrated how
ombining both the mRMR  and SOM-based network approaches
s a two-stage feature selection scheme provides a better way to
aximize the performance of our methods. In particular, our exper-

mental results have shown the benefit of utilizing these methods in
he quantification of methanol and p-xylene mixtures dissolved in
richlorotrifluoroethane. As a final remark of this paper, we want to
mphasize that these techniques could be readily exported to other
ulti-sensor paradigms, in which a high number of features per
easurement are available, such as, for example, the identification

nd localization of chemical analytes in the wind-tunnel utilizing
 multi-dimensional sensor array, gas distribution mapping, or gas
lume tracking with a robotic platform. We  believe, though, that
ue to the inherent complexity of these examples, those analyses
ould be the object of a completely new piece of research that we
eek to address in further works.

cknowledgments

This work was funded in part by NATO under the Science for
eace Program grant number CBP.MD.CLG 983914. A. Vergara is
unded by the U.S. Office of Naval Research (ONR), contract num-
er N00014-07-1-0741; by the Jet Propulsion Laboratory, contract
umber 2010-1396686; and by the US Army Medical Research
nd Materiel Command and the United States Army Research

nstitute of Environmental Medicine (USARIEM), contract number

81XWH-10-C-0040 in collaboration with Elintrix Inc. E. Llobet
s supported by the Spanish Ministry of Science and Innovation
nd the Catalan Agency for Research under the grant numbers TEC
ta 88 (2012) 95– 103 103

2009-07107  and 2009 SGR 789, respectively. The authors thank D.
Vargas and J. Martín for performing the measurements with the
FTIR-spectrophotometer, J. Ferre-Borrull for a helpful discussion
and to Joanna Zytkowicz for reading and revising the manuscript.

References

[1] J. Chalmers, P.R. Griffiths (Eds.), Handbook of Vibrational Spectroscopy, vols.
1–5, Wiley & Sons, Chichester, 2001.

[2]  E. Smidt, M.  Schwanninger, Spectrosc. Lett. 38 (2005) 247.
[3] E. Smidt, K.U. Eckhardt, P. Lechner, H.R. Schulten, P. Leinweber, Biodegradation

16 (2005) 67.
[4] P. Zaccheo, G. Ricca, L. Crippa, Compost Sci. Util. 10 (2002) 29.
[5] M.  Grube, J.G. Lin, P.H. Lee, S. Kokorevicha, Geoderma 130 (2006) 324.
[6] H. Günzler, H.M. Heise, H.-U. Gremlich, IR Spectroscopy, Wiley-VCH, Weinheim,

2002.
[7] P.R. Griffiths, P.J.A. de Hasseth (Eds.), Fourier Transform Infrared Spectrometry,

2nd ed., Wiley-Blackwell, 2007.
[8] T. Naes, H. Martens, J. Chemometr. 2 (1988) 155.
[9]  P. Geladi, B.R. Kowalski, Anal. Chim. Acta 185 (1986) 1.
10] A.S. Barros, D.N. Rutledge, Chemometr. Intell. Lab. Syst. 40 (1998) 65.
11] U. Depczynski, V.J. Frost, K. Molt, Anal. Chim. Acta 420 (2000) 217.
12] H. Martens, T. Naes, Multivariate Calibration, Wiley, London, 1993.
13] R. Leardi, R. Boggia, M. Terrile, J. Chemometr. 6 (1992) 267.
14] R. Leardi, J. Chemometr. 8 (1994) 65.
15]  C.B. Lucasius, M.L.M. Beckers, G. Kateman, Anal. Chim. Acta 286 (1994) 135.
16] D. Jouan-Rimbaud, D.L. Massart, R. Leardi, O.E. Noord, Anal. Chem. 67 (1995)

4295.
17]  J. Sun, J. Chemometr. 9 (1995) 21.
18]  N.R. Draper, H. Smith, Applied Regression Analysis, 2nd ed., Wiley, New York,

1981.
19]  K. Sasaki, S. Kawata, S. Minami, Appl. Spectrosc. 40 (1986) 185.
20] J.H. Kalivas, N. Roberts, J.M. Sutter, Anal. Chem. 61 (1989) 2024.
21] J.K. Amamcharla, S. Panigrahia, C.M. Logue, M.  Marchello, J.S. Sherwood, Biosyst.

Eng. 107 (1) (2010) 1.
22] K. Meissl, E. Smidt, M.  Schwanninger, Talanta 72 (2) (2007) 791.
23] E. Llobet, J. Brezmes, O. Gualdrón, X. Vilanova, X. Correig, Sens. Actuators B 99

(2004) 267.
24] I. Guyon, J. Mach. Learn. Res. 3 (2003) 1157.
25]  A.L. Blum, P.P. Langely, Artif. Intell. 97 (1997) 245.
26]  R. Bekkerman, N. Tishby, Y. Winter, I. Guyon, A. Elisseeff, J. Mach. Learn. Res. 3

(2003) 1183.
27] G. Forman, CIKM’08: Proceeding of the 17th ACM Conference on Information

and Knowledge Mining, New York, NY, USA, 2008, p. 263.
28] G. Forman, J. Mach. Learn. Res. 3 (2003) 1289.
29]  G.H. John, R. Kohavi, K. Pfleger, Machine Learning: Proceedings of the Eleventh

International Conference, San Francisco, 1994.
30] R. Kohalvi, G.H. John, Artif. Intell. 97 (1–2) (1997) 273.
31] P. Langley, Proceedings of the AAAI Fall Symposium on Relevance, AAAI Press,

1994, p. 140.
32] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression

Trees, Chapman & Hall/CRC, 1984.
33] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Advances

in Neural Information Proceeding Systems (NIPS) 13, MIT  Press, 2001, p. 668.
34]  D. Jouan-Rimbaud, D.L. Massart, O.E. Noord, Chemometr. Intell. Lab. Syst. 35

(1996) 213.
35] Bruker Optics Inc. http://www.brukeroptics.com/vertex.html.
36] SPECAC Inc. http://www.specac.com/products/liquid-transmission-cell/ft-

irliquid-transmission-cell/530.
37]  Bruker Optics Inc. http://www.brukeroptics.com/opus.html.
38] Eigenvector Research, Inc., PLS Toolbox. Version 5.2.1, 2009.
39] Matlab User’s Guide, The Mathworks Inc., 2009.
40]  H. Peng, F. Long, C. Ding, IEEE Trans. Pattern Anal. Mach. Intell. 27 (8) (2005)

1226.
41]  C. Di Natale, A. Macagnano, A. D’Amico, F. Davide, Meas. Sci. Technol. 8 (1997)

1236.
42]  M.  Zuppa, C. Distante, P. Siciliano, K.C. Persaud, Sens. Actuators B 98 (2004) 305.
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